采样定理是E.T.Whittaker(1915)、Kotelnikov(1933)、Shannon(1948)提出的,在数字信号处理领域中,采样定理是连续时间信号(通常称为“模拟信号”)和离散时间信号(通常称为“数字信号”)之间的基本桥梁。该定理说明采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。它为采样率建立了一个足够的条件,该采样率允许离散采样序列从有限带宽的连续时间信号中捕获所有信息。
多变量信号和图像的应用
采样定理通常针对单个变量的函数进行公式化。因此,定理可直接适用于时间相关的信号,并且通常在该上下文中公式化。然而,采样定理可以以直接的方式扩展到任意多个变量的函数。
灰度图像通常表示为代表位于行和列采样位置的交叉处的像素(图像元素)的相对强度的实数的二维阵列(或矩阵)。因此,图像需要两个独立变量或索引,以指定每个像素唯一一个用于行,一个用于列。
彩色图像通常由三个单独的灰度图像的组合构成,一个代表三原色(红色,绿色和蓝色)或简称RGB中的每一个。对于颜色使用3向量的其他颜色空间包括HSV,CIELAB,XYZ等。诸如青色,品红色,黄色和黑色(CMYK)的一些颜色空间可以通过四维表示颜色。所有这些都被处理为二维采样域上的向量值函数。
类似于一维离散时间信号,如果采样分辨率或像素密度不足,图像也可能遭受混叠。例如,具有高频率(换句话说,条纹之间的距离小)的条纹衬衫的数码照片可以在衬衫被照相机的图像传感器采样时导致衬衫的混淆。对于这种情况,在空间域中采样的“解决方案”将是更靠近衬衫,使用更高分辨率的传感器,或者在用传感器采集图像之前对图像进行光学处理。
——以上内容引用自百度百科。