彭罗斯阶梯
彭罗斯阶梯(Penrose stairs)是一个有名的几何学悖论,指的是一个始终向上或向下但却走不到头的阶梯,可以被视为彭罗斯三角形的一个变体,在此阶梯上永远无法找到最高的一点或者最低的一点。彭罗斯阶梯由英国数学家罗杰·彭罗斯及其父亲遗传学家列昂尼德·彭罗斯于1958年提出。
彭罗斯阶梯不可能在三维空间内存在,但只要放入更高阶的空间,彭罗斯阶梯就可以很容易的实现。
莫比乌斯带
公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯带”(也就是说,它的曲面只有一个)。