这些效应有助于抑制在小尺度的各向异性,并拉抬极小角尺度各向异性的特征指数衰减尾部。
LSS的深度为:光子的脱耦和重子不会瞬间相遇,而是需要当时宇宙年龄的某个可观比例。将此过程量化的方法之一为,利用“光子能见度函数(PVF)”。此函数定义为,以P(t)表示PVF,宇宙微波背景光子在时间t与t+dt之间最后散射的概率为P(t)dt。
PVF的最大值(给定的宇宙微波背景光子最可有可能散射的时间)已知相当精确。WMAP的一年成果的P(t)最大值为372,000年。这通常被视为宇宙微波背景形成的“时间”。然而,为了弄清光子与重子脱耦花了多“长”的时间,我们必须测量PVF的宽度。WMAP小组发现,PVF大于其最大值的一半(“半高全宽”,或FWHM)超过115,000年的期间。经由此测量,脱耦发生超过约11.5万年,而当完全脱耦,宇宙约为48.7万岁。
由于宇宙微波背景开始存在,又显然经过数个后来的物理过程影响,统称为后期各向异性,或二级各向异性。当宇宙微波背景光子自由出行畅通时,宇宙中的普通物质形式主要为中性氢和氦原子。然而,现今对星系的观测似乎表明,大部分星际介质(IGM)的体积由离子化的物质(因为存在着氢原子吸收线)构成。这意味着有个再电离期间,一些宇宙的物质被打散成氢离子。
——以上内容引用自百度百科