晋江文学城
下一章 上一章  目录  设置

34、034 ...

  •   In conclusion, this comprehensive Monte Carlo comparison study provides valuable insights into the performance of different parameter estimation methods. The findings contribute to improved statistical inference and decision-making in various fields. Researchers and practitioners can use this information to select appropriate estimation techniques based on the data characteristics, sample size, and underlying assumptions. Future research can further explore the relationship between parameter settings and the accuracy of estimation results, as well as investigate the use of uncommon parameter estimation methods for specific distributions.\\

      \vspace{0.5cm}

      \begin{thebibliography}{99}

      \vspace{0.5cm}

      \bibitem{Koch2013}
      Koch, K. R. (2013). Parameter estimation and hypothesis testing in linear models. Springer Science \& Business Media.

      \bibitem{Banks2012}
      Banks, H. T., \& Kunisch, K. (2012). Estimation techniques for distributed parameter systems. Springer Science \& Business Media.

      \bibitem{Casella2024}
      Casella, G., \& Berger, R. (2024). Statistical inference. CRC Press.

      \bibitem{Bourguignon2007}
      Bourguignon, F., Fournier, M., \& Gurgand, M. (2007). Selection bias corrections based on the multinomial logit model: Monte Carlo comparisons. Journal of Economic Surveys, 21(1), 174-205.

      \bibitem{Zheng2023}
      Zheng, Y., Mao, Y., Tsao, M., \& Cowen, L. L. (2023). Minimum chi-square method for estimating population size in capture-recapture experiments. Plos one, 18(10), e0292622.

      \bibitem{Choi2011}
      Choi, J., Kim, S., Chen, J., \& Dannels, S. (2011). A comparison of maximum likelihood and Bayesian estimation for polychoric correlation using Monte Carlo simulation. Journal of Educational and Behavioral Statistics, 36(4), 523-549.

      \bibitem{Li2016}
      Li, C. H. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior research methods, 48, 936-949.

      \bibitem{Vinayak2019}
      Vinayak, R. K., Kong, W., Valiant, G., \& Kakade, S. (2019, May). Maximum likelihood estimation for learning populations of parameters. In International Conference on Machine Learning (pp. 6448-6457). PMLR.

      \bibitem{Dey2018}
      Dey, S., Moala, F. A., \& Kumar, D. (2018). Statistical properties and different methods of estimation of Gompertz distribution with application. Journal of Statistics and Management Systems, 21(5), 839-876.

      \bibitem{Kizilaslan2017}
      K??z??laslan, F. (2017). Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode. Mathematics and Computers in Simulation, 136, 36-62.

      \bibitem{Wooldridge2001}
      Wooldridge, J. M. (2001). Applications of generalized method of moments estimation. Journal of Economic Perspectives, 15(4), 87-100.

      \bibitem{Hall2007}
      Hall, A. R., Inoue, A., Jana, K., \& Shin, C. (2007). Information in generalized method of moments estimation and entropy-based moment selection. Journal of Econometrics, 138(2), 488-512.

      \bibitem{Fu1993}
      Fu, Y. X., \& Li, W. H. (1993). Maximum likelihood estimation of population parameters. Genetics, 134(4), 1261-1270.

  • 本文当前霸王票全站排行,还差 颗地雷就可以前进一名。[我要投霸王票]
  • [灌溉营养液]
    • 昵称:
    • 评分: 2分|鲜花一捧 1分|一朵小花 0分|交流灌水 0分|别字捉虫 -1分|一块小砖 -2分|砖头一堆
    • 内容:
    •             注:1.评论时输入br/即可换行分段。
    •                 2.发布负分评论消耗的月石并不会给作者。
    •             查看评论规则>>