下一章 上一章 目录 设置
34、034 ...
-
In conclusion, this comprehensive Monte Carlo comparison study provides valuable insights into the performance of different parameter estimation methods. The findings contribute to improved statistical inference and decision-making in various fields. Researchers and practitioners can use this information to select appropriate estimation techniques based on the data characteristics, sample size, and underlying assumptions. Future research can further explore the relationship between parameter settings and the accuracy of estimation results, as well as investigate the use of uncommon parameter estimation methods for specific distributions.\\
\vspace{0.5cm}
\begin{thebibliography}{99}
\vspace{0.5cm}
\bibitem{Koch2013}
Koch, K. R. (2013). Parameter estimation and hypothesis testing in linear models. Springer Science \& Business Media.
\bibitem{Banks2012}
Banks, H. T., \& Kunisch, K. (2012). Estimation techniques for distributed parameter systems. Springer Science \& Business Media.
\bibitem{Casella2024}
Casella, G., \& Berger, R. (2024). Statistical inference. CRC Press.
\bibitem{Bourguignon2007}
Bourguignon, F., Fournier, M., \& Gurgand, M. (2007). Selection bias corrections based on the multinomial logit model: Monte Carlo comparisons. Journal of Economic Surveys, 21(1), 174-205.
\bibitem{Zheng2023}
Zheng, Y., Mao, Y., Tsao, M., \& Cowen, L. L. (2023). Minimum chi-square method for estimating population size in capture-recapture experiments. Plos one, 18(10), e0292622.
\bibitem{Choi2011}
Choi, J., Kim, S., Chen, J., \& Dannels, S. (2011). A comparison of maximum likelihood and Bayesian estimation for polychoric correlation using Monte Carlo simulation. Journal of Educational and Behavioral Statistics, 36(4), 523-549.
\bibitem{Li2016}
Li, C. H. (2016). Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares. Behavior research methods, 48, 936-949.
\bibitem{Vinayak2019}
Vinayak, R. K., Kong, W., Valiant, G., \& Kakade, S. (2019, May). Maximum likelihood estimation for learning populations of parameters. In International Conference on Machine Learning (pp. 6448-6457). PMLR.
\bibitem{Dey2018}
Dey, S., Moala, F. A., \& Kumar, D. (2018). Statistical properties and different methods of estimation of Gompertz distribution with application. Journal of Statistics and Management Systems, 21(5), 839-876.
\bibitem{Kizilaslan2017}
K??z??laslan, F. (2017). Classical and Bayesian estimation of reliability in a multicomponent stress–strength model based on the proportional reversed hazard rate mode. Mathematics and Computers in Simulation, 136, 36-62.
\bibitem{Wooldridge2001}
Wooldridge, J. M. (2001). Applications of generalized method of moments estimation. Journal of Economic Perspectives, 15(4), 87-100.
\bibitem{Hall2007}
Hall, A. R., Inoue, A., Jana, K., \& Shin, C. (2007). Information in generalized method of moments estimation and entropy-based moment selection. Journal of Econometrics, 138(2), 488-512.
\bibitem{Fu1993}
Fu, Y. X., \& Li, W. H. (1993). Maximum likelihood estimation of population parameters. Genetics, 134(4), 1261-1270.