晋江文学城
下一章 上一章  目录  设置

27、027 ...

  •   2.Uniform Distribution:

      \begin{equation}
      f(x|a, b) = \begin{cases}
      \frac{1}{b-a} & \text{for } a \leq x \leq b \\
      0 & \text{otherwise}
      \end{cases}
      \end{equation}

      The uniform distribution has constant probability density between two points a and b. It is often used to model situations where each outcome within an interval is equally likely.\\

      3. Exponential Distribution:
      \begin{equation}
      f(x|\lambda) = \begin{cases}
      \lambda e^{-\lambda x} & \text{for } x \geq 0 \\
      0 & \text{otherwise}
      \end{cases}
      \end{equation}

      The exponential distribution describes the time between events in a Poisson process, where events occur continuously and independently at a constant rate $\lambda$.\\

      4. Poisson Distribution:

      \begin{equation}
      P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad \text{for } k = 0, 1, 2, \ldots
      \end{equation}

      The Poisson distribution models the number of events occurring in a fixed interval of time or space, given a constant average rate of occurrence $\lambda$.\\

      5. Binomial Distribution:

      \begin{equation}
      P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \text{for } k = 0, 1, 2, \ldots, n
      \end{equation}

      The binomial distribution describes the number of successes in a fixed number n of independent Bernoulli trials, where each trial has probability of success p.\\

      These distributions are fundamental in statistics and have various applications in modeling real-world phenomena. They are characterized by their PDFs, which specify the probabilities of different outcomes.Table 1 presents the parameter estimates for these common distributions.\\

  • 本文当前霸王票全站排行,还差 颗地雷就可以前进一名。[我要投霸王票]
  • [灌溉营养液]
    • 昵称:
    • 评分: 2分|鲜花一捧 1分|一朵小花 0分|交流灌水 0分|别字捉虫 -1分|一块小砖 -2分|砖头一堆
    • 内容:
    •             注:1.评论时输入br/即可换行分段。
    •                 2.发布负分评论消耗的月石并不会给作者。
    •             查看评论规则>>