晋江文学城
下一章 上一章  目录  设置

24、024 ...

  •   Maximum Likelihood Estimation (MLE) is a method used to estimate the parameters of a statistical model by maximizing the likelihood function. Suppose we have a random sample $X_1, X_2, \ldots, X_n $ from a probability distribution with probability density function (pdf) or probability mass function (pmf) $ f(x; \theta) $, where $ \theta $ represents the parameter(s) to be estimated.

      The likelihood function $ L(\theta) $ is defined as the joint probability density or mass function of the observed data, considered as a function of the parameter(s) $ \theta $:

      \begin{equation}
      L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)
      \end{equation}

      The goal of MLE is to find the parameter value(s) $ \hat{\theta} $ that maximizes the likelihood function, or equivalently, the log-likelihood function $ \ell(\theta) $:

      \begin{equation}
      \ell(\theta) = \log L(\theta) = \sum_{i=1}^{n} \log f(x_i; \theta)
      \end{equation}

      To find $ \hat{\theta} $, we differentiate the log-likelihood function with respect to $\theta $, set the derivative(s) equal to zero, and solve for $ \hat{\theta} $:

      \begin{equation}
      \frac{\partial \ell(\theta)}{\partial \theta} = 0
      \end{equation}

      If the log-likelihood function is concave, the critical point(s) obtained by solving the above equation corresponds to the maximum likelihood estimator(s) $ \hat{\theta} $. In some cases, it may be more convenient to work with the negative log-likelihood function, denoted as $ -\ell(\theta) $, which is equivalent to minimizing the negative log-likelihood.

      The MLE properties, including consistency, asymptotic normality, and efficiency, make it one of the most widely used methods for parameter estimation in statistics.\\

  • 本文当前霸王票全站排行,还差 颗地雷就可以前进一名。[我要投霸王票]
  • [灌溉营养液]
    • 昵称:
    • 评分: 2分|鲜花一捧 1分|一朵小花 0分|交流灌水 0分|别字捉虫 -1分|一块小砖 -2分|砖头一堆
    • 内容:
    •             注:1.评论时输入br/即可换行分段。
    •                 2.发布负分评论消耗的月石并不会给作者。
    •             查看评论规则>>